AH-1540-S.E.-CV-19
 M.A./M.Sc. (PREV.) MATHEMATICS
 Term End Examination, 2019-20
 REAL ANALYSIS AND MEASURE THEORY PAPER-II

[Maximum Marks: 100
Note : Attempt any five questions. All questions carry equal marks.

1. (a) Prove that

$$
\int_{-a}^{b} f d x \leq \int_{a}^{-b} f d x
$$

(b) If $f \in R\left[\begin{array}{ll}a & b\end{array}\right]$ and x is monotonic increasing on $[a \quad b]$ such that $x^{\prime} \in R[a b]$, then prove $f \in R(x)$, and $\int_{a}^{b} f d x \leq \int_{a}^{b} f x^{\prime} d x$
2. State and prove Riemann's theorem.
3. (a) Let x be monotonically increasing on [a b] suppose $f_{n} \in R(x)$ on $[a b]$, for $n=1,2,3, \ldots \ldots \ldots$ and suppose $f_{n} \rightarrow F$ uniformly on $[a b]$. Then prove that $f \in R(x)$ on [a b], and $\int_{a}^{b} f d x=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n} d x$
(b) Test for the uniform convergence of the series $\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}+\frac{4 \mathrm{x}^{3}}{1+\mathrm{x}^{4}}+\frac{8 \mathrm{x}^{5}}{1+\mathrm{x}^{8}} \ldots \ldots,-1 / 2 \leq \mathrm{x} \leq \frac{1}{2}$
4. (a) If $\sum a_{n}, \sum b_{n}, \sum c_{n}$ converge to the sums A, B, C respectively, and if $c_{n}=a_{0} b_{n}+a_{1} b_{n-1}+\ldots \ldots+a_{n} b_{0}$, than prove that $A B=C$
(b) State and prove Tauber's theorem for power series.
5. (a) Prove that a linear operator A on a. Finite dimensional vector space X is one to one. If and only if the range of A is all of X.
(b) If $\boldsymbol{\Omega}$ be the set of all invertible linear operator on $R^{\boldsymbol{n}}$. Prove that if $A \in \Omega, B \in L\left(R^{n)}\right.$ and $\operatorname{llB}-$ All. $l l A^{-1} l l<1$ then $B \in \Omega$.
6. (a) State and prove chain rule.
(b) If X is complete metric space, and if. ϕ is a contraction of X into X, prove that there exists one and only one $x \in X$ such that $\phi(x)=x$
7. (a) If E has the outer measure zero, then prove that E is measurable set. Also prove that every subset of E is measurable.
(b) Prove that if E_{1} and E_{2} are measurable sets, than so is $E_{1} \cup E_{2}$
8. (a) Prove that a continuous function defined on a measurable set is measurable.
(b) Prove that if f and g are measurable functions, so is fog
9. (a) State and prove Bounded convergence theorem.
(b) State and prove Lebesgue Dominated convergence theorem.
10. (a) Let E be a measurable set with $m(E)<\infty$ prove that $L^{\infty}(E) \subset L^{p}(E)$ for each p with $1 \leq P<\infty$. Furthermore, if $\mathbf{f} \in \mathbf{L}^{\infty}(E)$ then $\operatorname{llfll}_{\infty}=\lim _{p \rightarrow \infty} \operatorname{lifll}_{p}$
(b) Let $\mathbf{1} \leq \mathrm{p} \leq \infty$ then, prove that for every pair $\mathrm{f}, \mathrm{g} \in \mathrm{L}^{\mathrm{P}}$, the following inequality holds llf $+\operatorname{gll}_{p} \leq \operatorname{llfll}_{p}+\operatorname{llgll}_{p}$

