AH-1540-S.E.-CV-19 M.A./M.Sc. (PREV.) MATHEMATICS Term End Examination, 2019-20 REAL ANALYSIS AND MEASURE THEORY PAPER-II

Time : Three Hours]

[Maximum Marks : 100

Note : Attempt any five questions. All questions carry equal marks.

1. (a) Prove that

$$\int_{-a}^{b} f dx \leq \int_{a}^{-b} f dx$$

(b) If $f \in R[a \ b]$ and x is monotonic increasing on $[a \ b]$ such that $x' \in R[a \ b]$, then prove $f \in R(x)$, and $\int_a^b f dx \le \int_a^b f x' dx$

- 2. State and prove Riemann's theorem.
- 3. (a) Let x be monotonically increasing on [a b] suppose f_n ∈ R(x) on [a b], for n = 1, 2, 3, and suppose f_n → F uniformly on [a b]. Then prove that f ∈ R(x) on [a b], and ∫_a^b fdx = lim_{n→∞} ∫_a^b f_ndx
 (b) Test for the uniform convergence of the series
 2x 4x³ 8x⁵

$$\frac{2x}{1+x^2} + \frac{4x}{1+x^4} + \frac{6x}{1+x^8} \dots \dots , -\frac{1}{2} \le x \le \frac{1}{2}$$

- 4. (a) If ∑a_n, ∑b_n, ∑c_n converge to the sums A, B, C respectively, and if c_n = a₀b_n + a₁b_{n-1} + + a_nb₀, than prove that AB=C
 (b) State and prove Tauber's theorem for power series.
- 5. (a) Prove that a linear operator A on a. Finite dimensional vector space X is one to one. If and only if the range of A is all of X.
 (b) If Ω be the set of all invertible linear operator on Rⁿ. Prove that if A∈Ω, B∈L(Rⁿ⁾
 - (b) If Ω be the set of all invertible linear operator on R^{n} . Prove that if AEQ, BEL(R^{n}) and $||B A|| \cdot ||A^{-1}|| < 1$ then BEQ.
- 6. (a) State and prove chain rule.
 (b) If X is complete metric space, and if. φ is a contraction of X into X, prove that there exists one and only one x∈X such that φ(x) = x
- 7. (a) If E has the outer measure zero, then prove that E is measurable set. Also prove that every subset of E is measurable.
 - (b) Prove that if E_1 and E_2 are measurable sets, than so is $E_1 \cup E_2$
- 8. (a) Prove that a continuous function defined on a measurable set is measurable.(b) Prove that if f and g are measurable functions, so is fog
- 9. (a) State and prove Bounded convergence theorem.(b) State and prove Lebesgue Dominated convergence theorem.
- 10. (a) Let E be a measurable set with m(E) < ∞ prove that L[∞](E) ⊂ L^p(E) for each p with 1 ≤ P < ∞. Furthermore, if f∈L[∞](E) then llfll_∞ = lim_{p→∞} llfl_p
 (b) Let 1 ≤ p ≤ ∞ then, prove that for every pair f, g∈L^p, the following inequality holds llf + gll_p ≤ llfll_p + llgll_p